- Хроники
- Chaotic Throne: High Five
- Исходники
- Присутствуют
- Сборка
- jts
В коде есть T0 = t = s << 56 | s << 48 | s4 << 40 | s << 32 | s8 << 24 | s5 << 16 | s2 << 8 | s9;
long s3 (который идет выше) не используется, но в Whirlpool2000 - который лежит рядом, в этой же сроке вместо s4 стоит s3 - где же правильно сделано? стоит ли заменять s4 на s3?
long s3 (который идет выше) не используется, но в Whirlpool2000 - который лежит рядом, в этой же сроке вместо s4 стоит s3 - где же правильно сделано? стоит ли заменять s4 на s3?
Код:
package org.mmocore.commons.crypt.adapt.gnu.crypto.hash;
// ----------------------------------------------------------------------------
// This file is not part of GNU Crypto
//
// Whirlpool2003 has been derived from the Whirlpool class in GNU Crypto,
// and has been developed by jonelo.
// ----------------------------------------------------------------------------
import org.mmocore.commons.crypt.adapt.gnu.crypto.Registry;
/**
* <p>
* Whirlpool2003, a new 512-bit hashing function operating on messages less than 2 ** 256 bits in length. The function structure is designed according to the Wide Trail strategy and permits a wide variety of implementation trade-offs.
* </p>
* <p/>
* <p>
* <b>IMPORTANT</b>: This implementation is not thread-safe.
* </p>
* <p/>
* <p>
* References:
* </p>
* <p/>
* <ol>
* <li><a href="http://planeta.terra.com.br/informatica/paulobarreto/Whirlpool2003Page.html"> The WHIRLPOOL Hashing Function</a>.<br>
* <a href="mailto:paulo.barreto@terra.com.br">Paulo S.L.M. Barreto</a> and <a href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a>.</li>
* </ol>
* @version $Revision: 1.9 $
*/
public final class Whirlpool2003 extends BaseHash
{
// Debugging methods and variables
// -------------------------------------------------------------------------
// private static final boolean DEBUG = false;
// private static final int debuglevel = 3;
// Constants and variables
// -------------------------------------------------------------------------
private static final int BLOCK_SIZE = 64; // inner block size in bytes
private static final int R = 10; // default number of rounds
private static final String Sd = "\u1823\uc6E8\u87B8\u014F\u36A6\ud2F5\u796F\u9152" + "\u60Bc\u9B8E\uA30c\u7B35\u1dE0\ud7c2\u2E4B\uFE57" + "\u1577\u37E5\u9FF0\u4AdA\u58c9\u290A\uB1A0\u6B85" + "\uBd5d\u10F4\ucB3E\u0567\uE427\u418B\uA77d\u95d8" + "\uFBEE\u7c66\udd17\u479E\ucA2d\uBF07\uAd5A\u8333" + "\u6302\uAA71\uc819\u49d9\uF2E3\u5B88\u9A26\u32B0" + "\uE90F\ud580\uBEcd\u3448\uFF7A\u905F\u2068\u1AAE" + "\uB454\u9322\u64F1\u7312\u4008\uc3Ec\udBA1\u8d3d" + "\u9700\ucF2B\u7682\ud61B\uB5AF\u6A50\u45F3\u30EF" + "\u3F55\uA2EA\u65BA\u2Fc0\udE1c\uFd4d\u9275\u068A" + "\uB2E6\u0E1F\u62d4\uA896\uF9c5\u2559\u8472\u394c" + "\u5E78\u388c\ud1A5\uE261\uB321\u9c1E\u43c7\uFc04" + "\u5199\u6d0d\uFAdF\u7E24\u3BAB\ucE11\u8F4E\uB7EB" + "\u3c81\u94F7\uB913\u2cd3\uE76E\uc403\u5644\u7FA9" + "\u2ABB\uc153\udc0B\u9d6c\u3174\uF646\uAc89\u14E1" + "\u163A\u6909\u70B6\ud0Ed\ucc42\u98A4\u285c\uF886";
private static final long[] T0 = new long[256];
private static final long[] T1 = new long[256];
private static final long[] T2 = new long[256];
private static final long[] T3 = new long[256];
private static final long[] T4 = new long[256];
private static final long[] T5 = new long[256];
private static final long[] T6 = new long[256];
private static final long[] T7 = new long[256];
private static final long[] rc = new long[R];
static
{
final int ROOT = 0x11d; // para. 2.1 [WHIRLPOOL]
int i, r, j;
long s, s2, s3, s4, s5, s8, s9, t;
char c;
final byte[] S = new byte[256];
for (i = 0; i < 256; i++)
{
c = Sd.charAt(i >>> 1);
s = ((i & 1) == 0 ? c >>> 8 : c) & 0xFFL;
s2 = s << 1;
if (s2 > 0xFFL)
s2 ^= ROOT;
s3 = s2 ^ s;
s4 = s2 << 1;
if (s4 > 0xFFL)
s4 ^= ROOT;
s5 = s4 ^ s;
s8 = s4 << 1;
if (s8 > 0xFFL)
s8 ^= ROOT;
s9 = s8 ^ s;
S[i] = (byte) s;
T0[i] = t = s << 56 | s << 48 | s4 << 40 | s << 32 | s8 << 24 | s5 << 16 | s2 << 8 | s9;
T1[i] = t >>> 8 | t << 56;
T2[i] = t >>> 16 | t << 48;
T3[i] = t >>> 24 | t << 40;
T4[i] = t >>> 32 | t << 32;
T5[i] = t >>> 40 | t << 24;
T6[i] = t >>> 48 | t << 16;
T7[i] = t >>> 56 | t << 8;
}
for (r = 1, i = 0, j = 0; r < R + 1; r++)
rc[i++] = (S[j++] & 0xFFL) << 56 | (S[j++] & 0xFFL) << 48 | (S[j++] & 0xFFL) << 40 | (S[j++] & 0xFFL) << 32 | (S[j++] & 0xFFL) << 24 | (S[j++] & 0xFFL) << 16 | (S[j++] & 0xFFL) << 8 | (S[j++] & 0xFFL);
}
/**
* The 512-bit context as 8 longs.
*/
private long H0, H1, H2, H3, H4, H5, H6, H7;
/**
* Work area for computing the round key schedule.
*/
private long k00, k01, k02, k03, k04, k05, k06, k07;
private long Kr0, Kr1, Kr2, Kr3, Kr4, Kr5, Kr6, Kr7;
/**
* work area for transforming the 512-bit buffer.
*/
private long n0, n1, n2, n3, n4, n5, n6, n7;
private long nn0, nn1, nn2, nn3, nn4, nn5, nn6, nn7;
// Static code - to intialise lookup tables --------------------------------
/**
* work area for holding block cipher's intermediate values.
*/
private long w0, w1, w2, w3, w4, w5, w6, w7;
// Constructor(s)
// -------------------------------------------------------------------------
/**
* Trivial 0-arguments constructor.
*/
public Whirlpool2003()
{
super(Registry.WHIRLPOOL_HASH, 20, BLOCK_SIZE);
}
/**
* <p>
* Private constructor for cloning purposes.
* </p>
* @param md the instance to clone.
*/
private Whirlpool2003(final Whirlpool2003 md)
{
this();
this.H0 = md.H0;
this.H1 = md.H1;
this.H2 = md.H2;
this.H3 = md.H3;
this.H4 = md.H4;
this.H5 = md.H5;
this.H6 = md.H6;
this.H7 = md.H7;
this.count = md.count;
this.buffer = md.buffer.clone();
}
// Class methods
// -------------------------------------------------------------------------
// Instance methods
// -------------------------------------------------------------------------
// java.lang.Cloneable interface implementation ----------------------------
@Override
public Object clone()
{
return (new Whirlpool2003(this));
}
// Implementation of concrete methods in BaseHash --------------------------
@Override
protected void transform(final byte[] in, int offset)
{
// apply mu to the input
n0 = (in[offset++] & 0xFFL) << 56 | (in[offset++] & 0xFFL) << 48 | (in[offset++] & 0xFFL) << 40 | (in[offset++] & 0xFFL) << 32 | (in[offset++] & 0xFFL) << 24 | (in[offset++] & 0xFFL) << 16 | (in[offset++] & 0xFFL) << 8 | (in[offset++] & 0xFFL);
n1 = (in[offset++] & 0xFFL) << 56 | (in[offset++] & 0xFFL) << 48 | (in[offset++] & 0xFFL) << 40 | (in[offset++] & 0xFFL) << 32 | (in[offset++] & 0xFFL) << 24 | (in[offset++] & 0xFFL) << 16 | (in[offset++] & 0xFFL) << 8 | (in[offset++] & 0xFFL);
n2 = (in[offset++] & 0xFFL) << 56 | (in[offset++] & 0xFFL) << 48 | (in[offset++] & 0xFFL) << 40 | (in[offset++] & 0xFFL) << 32 | (in[offset++] & 0xFFL) << 24 | (in[offset++] & 0xFFL) << 16 | (in[offset++] & 0xFFL) << 8 | (in[offset++] & 0xFFL);
n3 = (in[offset++] & 0xFFL) << 56 | (in[offset++] & 0xFFL) << 48 | (in[offset++] & 0xFFL) << 40 | (in[offset++] & 0xFFL) << 32 | (in[offset++] & 0xFFL) << 24 | (in[offset++] & 0xFFL) << 16 | (in[offset++] & 0xFFL) << 8 | (in[offset++] & 0xFFL);
n4 = (in[offset++] & 0xFFL) << 56 | (in[offset++] & 0xFFL) << 48 | (in[offset++] & 0xFFL) << 40 | (in[offset++] & 0xFFL) << 32 | (in[offset++] & 0xFFL) << 24 | (in[offset++] & 0xFFL) << 16 | (in[offset++] & 0xFFL) << 8 | (in[offset++] & 0xFFL);
n5 = (in[offset++] & 0xFFL) << 56 | (in[offset++] & 0xFFL) << 48 | (in[offset++] & 0xFFL) << 40 | (in[offset++] & 0xFFL) << 32 | (in[offset++] & 0xFFL) << 24 | (in[offset++] & 0xFFL) << 16 | (in[offset++] & 0xFFL) << 8 | (in[offset++] & 0xFFL);
n6 = (in[offset++] & 0xFFL) << 56 | (in[offset++] & 0xFFL) << 48 | (in[offset++] & 0xFFL) << 40 | (in[offset++] & 0xFFL) << 32 | (in[offset++] & 0xFFL) << 24 | (in[offset++] & 0xFFL) << 16 | (in[offset++] & 0xFFL) << 8 | (in[offset++] & 0xFFL);
n7 = (in[offset++] & 0xFFL) << 56 | (in[offset++] & 0xFFL) << 48 | (in[offset++] & 0xFFL) << 40 | (in[offset++] & 0xFFL) << 32 | (in[offset++] & 0xFFL) << 24 | (in[offset++] & 0xFFL) << 16 | (in[offset++] & 0xFFL) << 8 | (in[offset++] & 0xFFL);
// transform K into the key schedule Kr; 0 <= r <= R
k00 = H0;
k01 = H1;
k02 = H2;
k03 = H3;
k04 = H4;
k05 = H5;
k06 = H6;
k07 = H7;
nn0 = n0 ^ k00;
nn1 = n1 ^ k01;
nn2 = n2 ^ k02;
nn3 = n3 ^ k03;
nn4 = n4 ^ k04;
nn5 = n5 ^ k05;
nn6 = n6 ^ k06;
nn7 = n7 ^ k07;
// intermediate cipher output
w0 = w1 = w2 = w3 = w4 = w5 = w6 = w7 = 0L;
for (int r = 0; r < R; r++)
{
// 1. compute intermediate round key schedule by applying ro[rc]
// to the previous round key schedule --rc being the round constant
Kr0 = T0[(int) ((k00 >> 56) & 0xFFL)] ^ T1[(int) ((k07 >> 48) & 0xFFL)] ^ T2[(int) ((k06 >> 40) & 0xFFL)] ^ T3[(int) ((k05 >> 32) & 0xFFL)] ^ T4[(int) ((k04 >> 24) & 0xFFL)] ^ T5[(int) ((k03 >> 16) & 0xFFL)] ^ T6[(int) ((k02 >> 8) & 0xFFL)] ^ T7[(int) (k01 & 0xFFL)] ^ rc[r];
Kr1 = T0[(int) ((k01 >> 56) & 0xFFL)] ^ T1[(int) ((k00 >> 48) & 0xFFL)] ^ T2[(int) ((k07 >> 40) & 0xFFL)] ^ T3[(int) ((k06 >> 32) & 0xFFL)] ^ T4[(int) ((k05 >> 24) & 0xFFL)] ^ T5[(int) ((k04 >> 16) & 0xFFL)] ^ T6[(int) ((k03 >> 8) & 0xFFL)] ^ T7[(int) (k02 & 0xFFL)];
Kr2 = T0[(int) ((k02 >> 56) & 0xFFL)] ^ T1[(int) ((k01 >> 48) & 0xFFL)] ^ T2[(int) ((k00 >> 40) & 0xFFL)] ^ T3[(int) ((k07 >> 32) & 0xFFL)] ^ T4[(int) ((k06 >> 24) & 0xFFL)] ^ T5[(int) ((k05 >> 16) & 0xFFL)] ^ T6[(int) ((k04 >> 8) & 0xFFL)] ^ T7[(int) (k03 & 0xFFL)];
Kr3 = T0[(int) ((k03 >> 56) & 0xFFL)] ^ T1[(int) ((k02 >> 48) & 0xFFL)] ^ T2[(int) ((k01 >> 40) & 0xFFL)] ^ T3[(int) ((k00 >> 32) & 0xFFL)] ^ T4[(int) ((k07 >> 24) & 0xFFL)] ^ T5[(int) ((k06 >> 16) & 0xFFL)] ^ T6[(int) ((k05 >> 8) & 0xFFL)] ^ T7[(int) (k04 & 0xFFL)];
Kr4 = T0[(int) ((k04 >> 56) & 0xFFL)] ^ T1[(int) ((k03 >> 48) & 0xFFL)] ^ T2[(int) ((k02 >> 40) & 0xFFL)] ^ T3[(int) ((k01 >> 32) & 0xFFL)] ^ T4[(int) ((k00 >> 24) & 0xFFL)] ^ T5[(int) ((k07 >> 16) & 0xFFL)] ^ T6[(int) ((k06 >> 8) & 0xFFL)] ^ T7[(int) (k05 & 0xFFL)];
Kr5 = T0[(int) ((k05 >> 56) & 0xFFL)] ^ T1[(int) ((k04 >> 48) & 0xFFL)] ^ T2[(int) ((k03 >> 40) & 0xFFL)] ^ T3[(int) ((k02 >> 32) & 0xFFL)] ^ T4[(int) ((k01 >> 24) & 0xFFL)] ^ T5[(int) ((k00 >> 16) & 0xFFL)] ^ T6[(int) ((k07 >> 8) & 0xFFL)] ^ T7[(int) (k06 & 0xFFL)];
Kr6 = T0[(int) ((k06 >> 56) & 0xFFL)] ^ T1[(int) ((k05 >> 48) & 0xFFL)] ^ T2[(int) ((k04 >> 40) & 0xFFL)] ^ T3[(int) ((k03 >> 32) & 0xFFL)] ^ T4[(int) ((k02 >> 24) & 0xFFL)] ^ T5[(int) ((k01 >> 16) & 0xFFL)] ^ T6[(int) ((k00 >> 8) & 0xFFL)] ^ T7[(int) (k07 & 0xFFL)];
Kr7 = T0[(int) ((k07 >> 56) & 0xFFL)] ^ T1[(int) ((k06 >> 48) & 0xFFL)] ^ T2[(int) ((k05 >> 40) & 0xFFL)] ^ T3[(int) ((k04 >> 32) & 0xFFL)] ^ T4[(int) ((k03 >> 24) & 0xFFL)] ^ T5[(int) ((k02 >> 16) & 0xFFL)] ^ T6[(int) ((k01 >> 8) & 0xFFL)] ^ T7[(int) (k00 & 0xFFL)];
k00 = Kr0;
k01 = Kr1;
k02 = Kr2;
k03 = Kr3;
k04 = Kr4;
k05 = Kr5;
k06 = Kr6;
k07 = Kr7;
// 2. incrementally compute the cipher output
w0 = T0[(int) ((nn0 >> 56) & 0xFFL)] ^ T1[(int) ((nn7 >> 48) & 0xFFL)] ^ T2[(int) ((nn6 >> 40) & 0xFFL)] ^ T3[(int) ((nn5 >> 32) & 0xFFL)] ^ T4[(int) ((nn4 >> 24) & 0xFFL)] ^ T5[(int) ((nn3 >> 16) & 0xFFL)] ^ T6[(int) ((nn2 >> 8) & 0xFFL)] ^ T7[(int) (nn1 & 0xFFL)] ^ Kr0;
w1 = T0[(int) ((nn1 >> 56) & 0xFFL)] ^ T1[(int) ((nn0 >> 48) & 0xFFL)] ^ T2[(int) ((nn7 >> 40) & 0xFFL)] ^ T3[(int) ((nn6 >> 32) & 0xFFL)] ^ T4[(int) ((nn5 >> 24) & 0xFFL)] ^ T5[(int) ((nn4 >> 16) & 0xFFL)] ^ T6[(int) ((nn3 >> 8) & 0xFFL)] ^ T7[(int) (nn2 & 0xFFL)] ^ Kr1;
w2 = T0[(int) ((nn2 >> 56) & 0xFFL)] ^ T1[(int) ((nn1 >> 48) & 0xFFL)] ^ T2[(int) ((nn0 >> 40) & 0xFFL)] ^ T3[(int) ((nn7 >> 32) & 0xFFL)] ^ T4[(int) ((nn6 >> 24) & 0xFFL)] ^ T5[(int) ((nn5 >> 16) & 0xFFL)] ^ T6[(int) ((nn4 >> 8) & 0xFFL)] ^ T7[(int) (nn3 & 0xFFL)] ^ Kr2;
w3 = T0[(int) ((nn3 >> 56) & 0xFFL)] ^ T1[(int) ((nn2 >> 48) & 0xFFL)] ^ T2[(int) ((nn1 >> 40) & 0xFFL)] ^ T3[(int) ((nn0 >> 32) & 0xFFL)] ^ T4[(int) ((nn7 >> 24) & 0xFFL)] ^ T5[(int) ((nn6 >> 16) & 0xFFL)] ^ T6[(int) ((nn5 >> 8) & 0xFFL)] ^ T7[(int) (nn4 & 0xFFL)] ^ Kr3;
w4 = T0[(int) ((nn4 >> 56) & 0xFFL)] ^ T1[(int) ((nn3 >> 48) & 0xFFL)] ^ T2[(int) ((nn2 >> 40) & 0xFFL)] ^ T3[(int) ((nn1 >> 32) & 0xFFL)] ^ T4[(int) ((nn0 >> 24) & 0xFFL)] ^ T5[(int) ((nn7 >> 16) & 0xFFL)] ^ T6[(int) ((nn6 >> 8) & 0xFFL)] ^ T7[(int) (nn5 & 0xFFL)] ^ Kr4;
w5 = T0[(int) ((nn5 >> 56) & 0xFFL)] ^ T1[(int) ((nn4 >> 48) & 0xFFL)] ^ T2[(int) ((nn3 >> 40) & 0xFFL)] ^ T3[(int) ((nn2 >> 32) & 0xFFL)] ^ T4[(int) ((nn1 >> 24) & 0xFFL)] ^ T5[(int) ((nn0 >> 16) & 0xFFL)] ^ T6[(int) ((nn7 >> 8) & 0xFFL)] ^ T7[(int) (nn6 & 0xFFL)] ^ Kr5;
w6 = T0[(int) ((nn6 >> 56) & 0xFFL)] ^ T1[(int) ((nn5 >> 48) & 0xFFL)] ^ T2[(int) ((nn4 >> 40) & 0xFFL)] ^ T3[(int) ((nn3 >> 32) & 0xFFL)] ^ T4[(int) ((nn2 >> 24) & 0xFFL)] ^ T5[(int) ((nn1 >> 16) & 0xFFL)] ^ T6[(int) ((nn0 >> 8) & 0xFFL)] ^ T7[(int) (nn7 & 0xFFL)] ^ Kr6;
w7 = T0[(int) ((nn7 >> 56) & 0xFFL)] ^ T1[(int) ((nn6 >> 48) & 0xFFL)] ^ T2[(int) ((nn5 >> 40) & 0xFFL)] ^ T3[(int) ((nn4 >> 32) & 0xFFL)] ^ T4[(int) ((nn3 >> 24) & 0xFFL)] ^ T5[(int) ((nn2 >> 16) & 0xFFL)] ^ T6[(int) ((nn1 >> 8) & 0xFFL)] ^ T7[(int) (nn0 & 0xFFL)] ^ Kr7;
nn0 = w0;
nn1 = w1;
nn2 = w2;
nn3 = w3;
nn4 = w4;
nn5 = w5;
nn6 = w6;
nn7 = w7;
}
// apply the Miyaguchi-Preneel hash scheme
H0 ^= w0 ^ n0;
H1 ^= w1 ^ n1;
H2 ^= w2 ^ n2;
H3 ^= w3 ^ n3;
H4 ^= w4 ^ n4;
H5 ^= w5 ^ n5;
H6 ^= w6 ^ n6;
H7 ^= w7 ^ n7;
}
@Override
protected byte[] padBuffer()
{
// [WHIRLPOOL] p. 6:
// "...padded with a 1-bit, then with as few 0-bits as necessary to
// obtain a bit string whose length is an odd multiple of 256, and
// finally with the 256-bit right-justified binary representation of L."
// in this implementation we use 'count' as the number of bytes hashed
// so far. hence the minimal number of bytes added to the message proper
// are 33 (1 for the 1-bit followed by the 0-bits and the encoding of
// the count framed in a 256-bit block). our formula is then:
// count + 33 + padding = 0 (mod BLOCK_SIZE)
final int n = (int) ((count + 33) % BLOCK_SIZE);
final int padding = n == 0 ? 33 : BLOCK_SIZE - n + 33;
final byte[] result = new byte[padding];
// padding is always binary 1 followed by binary 0s
result[0] = (byte) 0x80;
// save (right justified) the number of bits hashed
final long bits = count * 8;
int i = padding - 8;
result[i++] = (byte) (bits >>> 56);
result[i++] = (byte) (bits >>> 48);
result[i++] = (byte) (bits >>> 40);
result[i++] = (byte) (bits >>> 32);
result[i++] = (byte) (bits >>> 24);
result[i++] = (byte) (bits >>> 16);
result[i++] = (byte) (bits >>> 8);
result[i] = (byte) bits;
return result;
}
@Override
protected byte[] getResult()
{
// apply inverse mu to the context
return new byte[]
{
(byte) (H0 >>> 56),
(byte) (H0 >>> 48),
(byte) (H0 >>> 40),
(byte) (H0 >>> 32),
(byte) (H0 >>> 24),
(byte) (H0 >>> 16),
(byte) (H0 >>> 8),
(byte) H0,
(byte) (H1 >>> 56),
(byte) (H1 >>> 48),
(byte) (H1 >>> 40),
(byte) (H1 >>> 32),
(byte) (H1 >>> 24),
(byte) (H1 >>> 16),
(byte) (H1 >>> 8),
(byte) H1,
(byte) (H2 >>> 56),
(byte) (H2 >>> 48),
(byte) (H2 >>> 40),
(byte) (H2 >>> 32),
(byte) (H2 >>> 24),
(byte) (H2 >>> 16),
(byte) (H2 >>> 8),
(byte) H2,
(byte) (H3 >>> 56),
(byte) (H3 >>> 48),
(byte) (H3 >>> 40),
(byte) (H3 >>> 32),
(byte) (H3 >>> 24),
(byte) (H3 >>> 16),
(byte) (H3 >>> 8),
(byte) H3,
(byte) (H4 >>> 56),
(byte) (H4 >>> 48),
(byte) (H4 >>> 40),
(byte) (H4 >>> 32),
(byte) (H4 >>> 24),
(byte) (H4 >>> 16),
(byte) (H4 >>> 8),
(byte) H4,
(byte) (H5 >>> 56),
(byte) (H5 >>> 48),
(byte) (H5 >>> 40),
(byte) (H5 >>> 32),
(byte) (H5 >>> 24),
(byte) (H5 >>> 16),
(byte) (H5 >>> 8),
(byte) H5,
(byte) (H6 >>> 56),
(byte) (H6 >>> 48),
(byte) (H6 >>> 40),
(byte) (H6 >>> 32),
(byte) (H6 >>> 24),
(byte) (H6 >>> 16),
(byte) (H6 >>> 8),
(byte) H6,
(byte) (H7 >>> 56),
(byte) (H7 >>> 48),
(byte) (H7 >>> 40),
(byte) (H7 >>> 32),
(byte) (H7 >>> 24),
(byte) (H7 >>> 16),
(byte) (H7 >>> 8),
(byte) H7
};
}
@Override
protected void resetContext()
{
H0 = H1 = H2 = H3 = H4 = H5 = H6 = H7 = 0L;
}
}